Write the letter for the correct answer in the blank at the right of each question.

1. Find the area of parallelogram ABCD.
 Round to the nearest tenth.
 A 54 in² B 76.4 in² C 95.2 in² D 162.7 in²
 \[A = (12)(6.3) \]

2. The area of parallelogram PQRS is 187 square units.
 Find the base if the height is 11 units.
 A \(b \) = 14 units B \(b \) = 17 units
 \[187 = \frac{x(11)}{11} \]
 \[x = 17 \]

3. The height of a parallelogram is one-third its base. If the area of the parallelogram is 363 square inches, find its base and height.
 A \(b = 33 \text{ in}, \ h = 11 \text{ in.} \) B \(b = 30 \text{ in}, \ h = 33 \text{ in.} \)
 \[363 = b \cdot h \]
 \[x = 11'' \]
 \[363 = (3x)(x) \]
 \[363 = 3x^2 \]
 \[x = x^2 \]

4. Find the area of kite ABCD.
 A \(A = 10.5 \text{ cm}^2 \) B \(A = 52 \text{ cm}^2 \)
 C \(A = 21 \text{ cm}^2 \) D \(A = 104 \text{ cm}^2 \)
 \[A = \frac{1}{2} d_1 d_2 \]
 \[= \frac{1}{2} (8)(13) \]
 \[= 52 \text{ cm}^2 \]
5. A trapezoid has base lengths of 8.5 and 14.5 feet with an area of 184 square feet. What is the height of the trapezoid?
 A 4 ft
 B 8 ft
 C 16 ft **D 23 ft**

\[A = \frac{1}{2} h (b_1 + b_2) \]
\[184 = \frac{1}{2} h (8.5 + 14.5) \]
\[184 = \frac{1}{2} h \times 23 \]
\[\frac{184}{11.5} = h \]
\[h = 16 \]

6. Rhombus \(ABCD \) has an area of 126 square units. If \(DB = 18 \text{ units} \), find \(AC \).
 A 9 units
 B 14 units **C 7 units**
 D 3.5 units

\[A = \frac{1}{2} d_1 d_2 \]
\[126 = \frac{1}{2} (18) x \]
\[126 = 9x \]
\[x = 14 \]

7. Find the diameter of a circle with an area of 804.2 square centimeters.
 A 8 cm
 B 32 cm **C 48 cm**
 D 64 cm

\[A = \pi r^2 \]
\[804.2 = \pi r^2 \]
\[\frac{804.2}{\pi} = r^2 \]
\[\sqrt{255.98} = r \]
\[r = 15.9 \]
\[d = 32 \]

8. If \(m \angle EGF = 235 \), find the area of the shaded sector.
 A 82.3 in\(^2\)
 B 820.3 in\(^2\)
 C 436.3 in\(^2\) **D 1256.6 in\(^2\)**

\[\frac{x}{360} \times 235 \times \pi \]
\[x = \frac{125}{\pi} \times 360 \]
\[360x = 157080 \]
\[x = 43.6 \]
9. Find the area of an equilateral triangle with a side length of 12 centimeters. Round to the nearest tenth.
A 187.1 cm² C 62.4 cm²
B 93.5 cm² D 54 cm²

\[\frac{\sqrt{3}}{4} \times 12^2 \]
\[\frac{144\sqrt{3}}{4} \]
\[36\sqrt{3} \]
\[62.4 \]

10. Find the area of an octagon with a perimeter of 80 inches. Round to the nearest tenth.
A 965.7 in² C 402.8 in²
B 355.7 in² D 82.8 in²

\[\tan 22.5 \times 5 \]
\[\frac{12.07}{5} \]
\[2.41 \]

11. Find the area of the shaded region. Round to the nearest tenth.
A 12.6 m² C 32.9 m²
B 24.6 m² D 44.9 m²

\[\frac{1}{4} \sqrt{3} (8\sqrt{3})^2 \]
\[64.3 \]
\[192 \]
\[\sqrt{48} \approx 8 \times 4 - 50.26 \]
\[32.9 \]

12. Find the area of the figure. Round to the nearest tenth.
A 14.6 units² C 18.2 units²
B 15 units² D 22.4 units²

\[\pi \times 15^2 \times \frac{1}{2} \]
\[3.5 + 15 - \frac{1}{2} \times 4 \]
\[14.63 \]
13. Gerry wants to have a cover made for his swimming pool which consists of two parallel lines that are connected at each end by the curved boundary of a semicircle. The parallel lines are 12 feet long and 10 feet apart. Find the area of the swimming pool cover.
A 572.39 ft²
B 233.02 ft²
C 434.16 ft²
D 198.54 ft²

\[\pi \cdot 5^2 = 78.5 \]

\[10 \times 12 = 120 \]

\[120 \div 20 = 6 \]

\[198.54 \]

14. Find the area of the hexagon.

\(\text{A} \) 69.9 ft²
\(\text{B} \) 419.2 ft²
\(\text{C} \) 419.2 ft²
\(\text{D} \) 634.7 ft²

15. A pie has a diameter of 9 inches. Each slice of the pie has a central angle of 45°. What is the area of each slice of pie?
A 8.0 in²
B 31.8 in²
C 127.2 in²
D 221.8 in²

\[\frac{45}{360} = \frac{1}{8} \]

\[x = \frac{1}{8} \cdot 28.27 \]

\[x = 3.62 \]

\[45 \div 360 = 0.125 \]

\[x = 7.95 \]

16. \(\triangle ABC \) is similar to \(\triangle A_1B_1C_1 \). If \(\angle A = 50^\circ \), \(\angle B = 70^\circ \), and \(\angle C = ? \) find the value of \(x \).

\[\frac{13^2}{7^2} = \frac{50}{x} \]

\[x = 14.5 \text{ in}^2 \]