1. Find the value of \(a \).
 \[\frac{a}{2} = \frac{15}{6} \]
 A. 1
 B. 2
 C. 3.5
 D. 5

2. Find the value of \(n \).
 \[\frac{29}{18} = \frac{87}{n} \]
 A. 45
 B. 54
 C. 67
 D. 76

3. Find the value of \(x \).
 \[\frac{8}{4} = \frac{x}{5} \]
 \[4x = 40 \]
 \[x = 10 \]
 A. 8.5
 B. 9
 C. 10
 D. 11

4. Find the value of \(x \).
 \[\frac{14}{7} = \frac{18}{x} \]
 A. 9
 B. 10
 C. 11
 D. 12
New Vocabulary

- dilation
- similarity transformation
- center of dilation
- scale factor of a dilation
- enlargement \(SF > 1 \)
- reduction \(< 1 \)

Types of Dilations

A dilation with a scale factor greater than 1 produces an **enlargement**, or an image that is larger than the original figure.

Symbols

- If \(k > 1 \), the dilation is an enlargement.

Example

\(\triangle FGH \) is dilated by a scale factor of 3 to produce \(\triangle RST \). Since \(3 > 1 \), \(\triangle RST \) is an enlargement of \(\triangle FGH \).
A dilation with a scale factor between 0 and 1 produces a **reduction**, an image that is smaller than the original figure.

Symbols If $0 < k < 1$, the dilation is a reduction.

Example $ABCD$ is dilated by a scale factor of $\frac{1}{4}$ to produce $WXYZ$. Since $0 < \frac{1}{4} < 1$, $WXYZ$ is a reduction of $ABCD$.

EXAMPLE 1 Identify a Dilation and Find Its Scale Factor

A. Determine whether the dilation from Figure A to Figure B is an **enlargement** or a **reduction**. Then find the scale factor of the dilation.

\[
\frac{\text{New}}{\text{old}} = \frac{3}{6} = \frac{2}{4}
\]

- $\frac{1}{2}$
- $\frac{1}{2}$

EXAMPLE 1 Check Your Progress

B. Determine whether the dilation from Figure A to Figure B is an enlargement or a reduction. Then find the scale factor of the dilation.

- **A.** reduction; $\frac{1}{2}$
- **B.** reduction; $\frac{1}{3}$
- **C.** enlargement; 2
- **D.** enlargement; 3
PHOTOCOPYING A photocopy of a receipt is 1.5 inches wide and 4 inches long. By what percent should the receipt be enlarged so that its image is 2 times the original? What will be the dimensions of the enlarged image?

- \[1.5 \times 2 = 3 \]
- \[4 \times 2 = 8 \]
- \[3 \times 8 = 24 \]

PHOTOGRAPHS Mariano wants to enlarge a picture he took that is 4 inches by 7.5 inches. He wants it to fit perfectly into a frame that is 400% of the original size. What will be the dimensions of the enlarged photo?

- **A.** 15 inches by 25 inches
- **B.** 8 inches by 15 inches
- **C.** 12 inches by 22.5 inches
- **D.** 16 inches by 30 inches

EXAMPLE 3 Verify Similarity after a Dilation

A. Graph the original figure and its dilated image. Then verify that the dilation is a similarity transformation.

- Original: \(M(-6, -3), N(6, -3), O(-6, 6) \)
- Image: \(D(-2, -1), F(2, -1), G(-2, 2) \)

- \[\frac{3}{9} = \frac{1}{3} \]
- \[\frac{4}{4} = 1 \]

EXAMPLE 3 Verify Similarity after a Dilation

B. Graph the original figure and its dilated image. Then verify that the dilation is a similarity transformation.

- Original: \(G(2, 1), H(4, 1), I(2, 0), J(4, 0) \)
- Image: \(Q(4, 2), R(8, 2), S(4, 0), T(8, 0) \)
\[GH = \sqrt{(2 - 4)^2 + (1 - 1)^2} = \sqrt{4} = 2 \]
\[QR = \sqrt{(4 - 8)^2 + (2 - 2)^2} = \sqrt{16} = 4 \]
\[HJ = \sqrt{(4 - 4)^2 + (1 - 0)^2} = \sqrt{1} = 1 \]
\[RT = \sqrt{(8 - 8)^2 + (2 - 0)^2} = \sqrt{4} = 2 \]
\[JL = \sqrt{(2 - 4)^2 + (0 - 0)^2} = \sqrt{4} = 2 \]
\[TS = \sqrt{(4 - 8)^2 + (0 - 0)^2} = \sqrt{16} = 4 \]
\[IG = \sqrt{(2 - 2)^2 + (1 - 0)^2} = \sqrt{1} = 1 \]
\[SQ = \sqrt{(4 - 4)^2 + (2 - 0)^2} = \sqrt{4} = 2 \]

Find and compare the ratios of corresponding sides.

\[
\frac{QR}{GH} = \frac{4}{2} \text{ or } 2 \quad \frac{RT}{HJ} = \frac{2}{1} \quad \frac{TS}{JL} = \frac{4}{2} \text{ or } 2 \quad \frac{SQ}{IG} = \frac{2}{1}
\]